1. Hatoya, S. et al.Effect of co-culturing with embryonic fibroblasts on IVM, IVF and IVC of canine oocytes. Theriogenology 66, 1083–1090 (2006).
  2. Hikichi, T. et al.Differentiation potential of parthenogenetic embryonic stem cells is improved by nuclear transfer. Stem Cells 25, 46–53 (2007).
  3. Huang, Y. H., Yang, J. C., Wang, C. W. & Lee, S. Y. Dental Stem Cells and Tooth Banking for Regenerative Medicine.  Exp. Clin. Med.2, 111–117 (2010).
  4. Lechner, S. M. Interaktionen von Inseminatbestandteilen mit Epithelzellen und Leukozyten im Uterus des Rindes. (2008).
  5. Liu, D. et al.Relation between human decay-accelerating factor (hDAF) expression in pig cells and inhibition of human serum anti-pig cytotoxicity: Value of highly expressed hDAF for xenotransplantation. Xenotransplantation 14, 67–73 (2007).

 

Nature

1.

Lam, C.K., et al.: Nature, 465, 478(2010).

Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization.

https://www.ncbi.nlm.nih.gov/pubmed/20505729

2.

Stefater, J. A. 3rd. et al.: Nature, 474, 511(2011).

Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells

https://www.ncbi.nlm.nih.gov/pubmed/21623369

3.

Deng, H. X., et al.: Nature, 477, 211(2011).

Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia.

https://www.ncbi.nlm.nih.gov/pubmed/21857683

4.

Lee, Y., et al.: Nature, 487, 433(2012).

Oligodendroglia metabolically support axons and contribute to neurodegeneration.

https://www.ncbi.nlm.nih.gov/pubmed/22801498

・Sudan K. et al.: Free Radic Biol Med. 2019 Jun; 137: 131-142 
"TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages."
Transfected cell: Human monocyte-derived macrophages
Transfected molecule: siRNA (ScreenFect™A plus)

 

・Osaki Y. et al.: Biochem Biophys Res Commun. 2019 Apr 24 published. 
"Calnexin promotes the folding of mutant iduronate 2-sulfatase related to mucopolysaccharidosis type II."

 

・Cui J. et al.: J Control Release. 2019 May 1 published. 
"Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver."

 

・Yokoyama C. et al.: Biochem Biophys Res Commun. 2019 Mar 7 published. 
"Three populations of adult Leydig cells in mouse testes revealed by a novel mouse HSD3B1-specific rat monoclonal antibody."
Transfected cell: HEK293T cells
Transfected molecule: plasmid DNA (ScreenFect™A)

 

Aβ ELISA kit reference List

292-62301 Human β Amyloid(1-40) ELISA Kit Wako

  1. Zhang, C., et al.: J. Biol. Chem., 285, 37, 28472(2010).

Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

https://www.ncbi.nlm.nih.gov/pubmed/20622013

  1. Serrano-Pozo A., et al.: Alzheimer Dis. Assoc. Disord., 3, 220(2010).

Effects of Simvastatin on Cholesterol Metabolism and Alzheimer Disease Biomarkers https://www.ncbi.nlm.nih.gov/pubmed/20473136

  1. Zhang, C., et al.: J. Alzheimers Dis., 22, 2, 683(2010).

Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. https://www.ncbi.nlm.nih.gov/pubmed/20847415

  1. Head, E., et al.: J. Alzheimers Dis., 23, 3, 399(2011).

Plasma amyloid-β as a function of age, level of intellectual disability, and presence of dementia in Down syndrome.

https://www.ncbi.nlm.nih.gov/pubmed/21116050

  1. Koppel, J., et al.: Mol. Med., 20, 29(2014).

CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau Processing in a Transgenic Mouse Model of Alzheimer’s Disease

https://www.ncbi.nlm.nih.gov/pubmed/24722782

  1. Xie, Z., et al.: Ann. Clin. Transl. Neurol., 1, 5, 319(2014).

Preoperative cerebrospinal fluid β-Amyloid/Tau ratio and postoperative delirium. https://www.ncbi.nlm.nih.gov/pubmed/24860840

  1. Gonzales C., et al.: Pharmacol. Biochem. Behav., 126, 28(2014).

Alternative method of oral administration by peanut butter pellet formulation results in target engagement of BACE1 and attenuation of gavage-induced stress responses in mice https://www.ncbi.nlm.nih.gov/pubmed/25242810

  1. Waragai M., et al.: J. Alzheimers Dis., 41, 4, 1207(2014).

Utility of SPM8 plus DARTEL (VSRAD) combined with magnetic resonance spectroscopy as adjunct techniques for screening and predicting dementia due to Alzheimer's disease in clinical practice

https://www.ncbi.nlm.nih.gov/pubmed/24787913

  1. Oka, S. et al.: Sci. Rep., 6, 37889(2016).

Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/27897204

  1. Tateno, A., et al.: Alzheimers Dement. (Amst)., 9, 51(2017).

Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. https://www.ncbi.nlm.nih.gov/pubmed/28975146

  1. Bourdenx, M., et al.: Sci. Rep., 7, 45831(2017).

Lack of spontaneous age-related brain pathology in Octodon degus: a reappraisal of the model. https://www.ncbi.nlm.nih.gov/pubmed/28374864

12 Waragai, M., et al.: J. Alzheimers Dis., 60, 4, 1411(2017).

Decreased N-Acetyl Aspartate/Myo-Inositol Ratio in the Posterior Cingulate Cortex Shown by Magnetic Resonance Spectroscopy May Be One of the Risk Markers of Preclinical Alzheimer's Disease: A 7-Year Follow-Up Study.

 https://www.ncbi.nlm.nih.gov/pubmed/28968236

  1. Brubaker, W. D., et al.: Alzheimers Dement., 12, 1397(2017).

Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms https://www.ncbi.nlm.nih.gov/pubmed/28475854

  1. Kanatsu, K., et al.: J. Neurochem., 147, 1, 110(2018).

Retrograde transport of γ-secretase from endosomes to the trans-Golgi network regulates Aβ42 production.

https://www.ncbi.nlm.nih.gov/pubmed/29851073

  1. Ohshima, Y., et al.: Heliyon, 4, 1, e00511(2018).

Mutations in the β-amyloid precursor protein in familial Alzheimer's disease increase Aβ oligomer production in cellular models

https://www.ncbi.nlm.nih.gov/pubmed/29560429

  1. Ohshima, Y., et al.: J. Toxicol. Sci., 43, 4, 257(2018).

Nicotine and methyl vinyl ketone, major components of cigarette smoke extracts, increase protective amyloid-β peptides in cells harboring amyloid-β precursor protein. https://www.ncbi.nlm.nih.gov/pubmed/29618714

  1. Kara, E., et al.: J. Biol. Chem., 293, 34, 13247(2018).

A flow cytometry–based in vitro assay reveals that formation of apolipoprotein E (ApoE)–amyloid beta complexes depends on ApoE isoform and cell type https://www.ncbi.nlm.nih.gov/pubmed/29950521

  1. Kusakari, S., et al.: J. Neurochem., 144, 2, 218(2018).

Calmodulin-like skin protein protects against spatial learning impairment in a mouse model of Alzheimer disease.

https://www.ncbi.nlm.nih.gov/pubmed/29164613

  1. Meyer, K., et al.: Cell Rep. 26, 5, 1112(2019).

REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease https://www.ncbi.nlm.nih.gov/pubmed/30699343

298-64601 Human βAmyloid(1-40)ELISA Kit Wako Ⅱ

  1. Chiba, T., et al.: Mol. Psychiatry, 2, 206(2009).

Amyloid-β causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons

https://www.ncbi.nlm.nih.gov/pubmed/18813209

  1. Ohta, K., et al.: Autophagy, 3, 345(2010).

Autophagy impairment stimulates PS1 expression and γ-secretase activity https://www.ncbi.nlm.nih.gov/pubmed/20168091

  1. Umeda, T., et al.: Life Sci., 91, 23, 1169(2012).

Hypercholesterolemia accelerates intraneuronal accumulation of Aβ oligomers resulting in memory impairment in Alzheimer's disease model mice https://www.ncbi.nlm.nih.gov/pubmed/22273754

  1. Richens, J. L., et al.: Int. J. Mol. Epidemiol. Genet., 5, 2, 53(2014).

Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid https://www.ncbi.nlm.nih.gov/pubmed/24959311

  1. Katsuda, T., et al.: Methods Mol. Biol., 1212, 171(2015).

Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics https://www.ncbi.nlm.nih.gov/pubmed/25085563

  1. Yokoyama, H., et al.: BMC Geriatr., 15, 60(2015).

The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial https://www.ncbi.nlm.nih.gov/pubmed/26018225

  1. Schütt, T., et al.: J. Vet. Intern. Med., 29, 6, 1569(2015).

Cognitive function, progression of age‐related behavioral changes, biomarkers, and survival in dogs more than 8 years old

https://www.ncbi.nlm.nih.gov/pubmed/26463980

  1. Schütt, T., et al.: J. Alzheimers Dis., 52, 2, 433(2016).

Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer's Disease: A Translational Study of Neuropathological and Inflammatory Markers. https://www.ncbi.nlm.nih.gov/pubmed/27003213

  1. Wan, W., et al.: Exp. Gerontol., 81, 92(2016). EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse https://www.ncbi.nlm.nih.gov/pubmed/27220811
  2. Tateno, A., et al.: Alzheimers Dement. (Amst)., 9, 51(2017).

Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. https://www.ncbi.nlm.nih.gov/pubmed/28975146

294-62501 Human/Rat β Amyloid(40)ELISA Kit Wako

  1. Shimmyo, Y., et al.: J. Neurosci. Res., 86, 2, 368(2008).

Multifunction of myricetin on Aβ: neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases

https://www.ncbi.nlm.nih.gov/pubmed/17722071

  1. Zhang, C., et al.: J. Alzheimers Dis., 22, 2, 683(2010).

Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. https://www.ncbi.nlm.nih.gov/pubmed/20847415

  1. Zhang, C., et al.: J. Biol. Chem., 285, 37, 28472(2010).

 Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

https://www.ncbi.nlm.nih.gov/pubmed/20622013

  1. Walls, K. C., et al.: J. Biol. Chem., 287, 36, 30317(2012).

Swedish Alzheimer Mutation Induces Mitochondrial Dysfunction Mediated by HSP60 Mislocalization of Amyloid Precursor Protein (APP) and Beta-Amyloid https://www.ncbi.nlm.nih.gov/pubmed/22753410

  1. Bryson, J. B., et al.: Hum. Mol. Genet., 21, 17, 3871(2012).

Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

https://www.ncbi.nlm.nih.gov/pubmed/22678056

  1. Sarajärvi, T., et al.: J. Cell Mol. Med., 16, 11, 2754(2012).

Bepridil decreases A β and calcium levels in the thalamus after middle cerebral artery occlusion in rats

https://www.ncbi.nlm.nih.gov/pubmed/22805236

  1. Vepsäläinen, S., et al.: J. Nutr. Biochem., 24, 1, 360(2013).

Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease

https://www.ncbi.nlm.nih.gov/pubmed/22995388

  1. Teich, A. F., et al.: PLoS One., 8, 2, e55647(2013).

A Reliable Way to Detect Endogenous Murine β-Amyloid https://www.ncbi.nlm.nih.gov/pubmed/23383341

  1. Dolev, I., et al.: Nat. Neurosci., 16, 5, 587(2013). Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. https://www.ncbi.nlm.nih.gov/pubmed/23563578
  2. Ramos-Rodriguez, J. J., et al.: PLoS One, 8, 11, e79947(2013).

Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice

https://www.ncbi.nlm.nih.gov/pubmed/24278223

  1. Kitaoka, K., et al.: Neuropharmacology, 72, 58(2013).

The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice https://www.ncbi.nlm.nih.gov/pubmed/23624141

  1. Wang, W., et al.: FASEB J., 28, 2, 849(2014).

Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2.

 https://www.ncbi.nlm.nih.gov/pubmed/24249638

  1. Kanatsu, K., et al.: Nat. Commun., 5, 3386(2014).

Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase

https://www.ncbi.nlm.nih.gov/pubmed/24577224

  1. Ramos-Rodriguez, J. J., et al.: Psychoneuroendocrinology, 48, 123(2014).

Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. https://www.ncbi.nlm.nih.gov/pubmed/24998414

  1. Lipsanen, A., et al.: Neurosci. Lett., 580, 173(2014).

KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, does not modify secondary pathology in the thalamus following focal cerebral stroke in rats https://www.ncbi.nlm.nih.gov/pubmed/25123443

  1. Rudnitskaya, E. A., et al.: J. Alzheimers Dis., 47, 1, 103(2015)

Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer's disease

https://www.ncbi.nlm.nih.gov/pubmed/26402759

  1. Tapia-Rojas, C., et al.: Mol. Neurodegener., 10, 62(2015).

Is L-methionine a trigger factor for Alzheimer’s-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice

 https://www.ncbi.nlm.nih.gov/pubmed/26590557

  1. Kim, Y. H., et al.: Nat. Protoc., 10, 7, 985(2015).

A 3D human neural cell culture system for modeling Alzheimer's disease. https://www.ncbi.nlm.nih.gov/pubmed/26068894

  1. Sarajärvi, T., et al.: J. Alzheimers Dis., 48, 2, 507(2015).

 Genetic variation in δ-opioid receptor associates with increased β-and γ-secretase activity in the late stages of Alzheimer's disease

https://www.ncbi.nlm.nih.gov/pubmed/26402014

  1. Leal, N. S., et al.: J. Cell Mol. Med., 20, 9, 1686(2016).

 Mitofusin-2 knockdown increases ER–mitochondria contact and decreases amyloid β‐ peptide production

 https://www.ncbi.nlm.nih.gov/pubmed/27203684

  1. Kanatsu, K., et al.: Hum. Mol. Genet., 25, 18, 3988(2016). Partial loss of CALM function reduces Aβ42 production and amyloid deposition in vivo https://www.ncbi.nlm.nih.gov/pubmed/27466196
  2. Yamaguchi, T., et al.: Sci. Rep., 6, 34505(2016).

Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing https://www.ncbi.nlm.nih.gov/pubmed/27687691

  1. Sun, M., et al.: Neurobiol. Dis., 93, 1(2016).

The polarity protein Par3 regulates APP trafficking and processing through the endocytic adaptor protein Numb

https://www.ncbi.nlm.nih.gov/pubmed/27072891

  1. Ramos-Rodriguez, J. J., et al.: Mol. Neurobiol., 53, 4, 2685(2016).

Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus.

https://www.ncbi.nlm.nih.gov/pubmed/26156287

  1. Stefanova, N. A., et al.: Aging (Albany NY), 8, 11, 2713(2016).

An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology.

https://www.ncbi.nlm.nih.gov/pubmed/27750209

  1. Chen, W. T., et al.: PLoS One, 7, 4, e35807(2017).

Amyloid-beta (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-zinc/copper assemblies

https://www.ncbi.nlm.nih.gov/pubmed/22558227

  1. Tateno, A., et al.: Alzheimers Dement. (Amst)., 9, 51(2017).

Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. https://www.ncbi.nlm.nih.gov/pubmed/28975146

  1. Illouz, T., et al.: J. Neurosci. Methods, 291, 28(2017).

A protocol for quantitative analysis of murine and human amyloid-β1-40 and 1-42. https://www.ncbi.nlm.nih.gov/pubmed/28768163

  1. Kolosova, N. G., et al.: Curr. Alzheimer Res., 14, 12, 1283(2017).

 Antioxidant SkQ1 Alleviates Signs of Alzheimer's Disease-like Pathology in Old OXYS Rats by Reversing Mitochondrial Deterioration

https://www.ncbi.nlm.nih.gov/pubmed/28637402

  1. Infante-Garcia C., et al.: Mol. Neurobiol., 54, 6, 4696(2017).

Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice.

https://www.ncbi.nlm.nih.gov/pubmed/27443159

  1. Ramos-Rodriguez, J. J., et al.: Mol. Neurobiol., 54, 5, 3428(2017).

Progressive Neuronal Pathology and Synaptic Loss Induced by Prediabetes and Type 2 Diabetes in a Mouse Model of Alzheimer's Disease.

https://www.ncbi.nlm.nih.gov/pubmed/27177549

  1. Cai, T., et al.: J. Neurosci., 37, 50, 12272(2017).

Activation of γ-Secretase Trimming Activity by Topological Changes of Transmembrane Domain 1 of Presenilin 1.

https://www.ncbi.nlm.nih.gov/pubmed/29118109

  1. Kidana, K., et al.: EMBO Mol. Med., 10, 3, (2018).

Loss of kallikrein‐related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice

https://www.ncbi.nlm.nih.gov/pubmed/29311134

  1. Sasaguri, H., et al.: Nat. Commun., 9, 1, 2892(2018).

Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID https://www.ncbi.nlm.nih.gov/pubmed/30042426

294-64701 Human/Rat βAmyloid(40)ELISA Kit Wako Ⅱ

  1. Kawahara, K., et al.: Biol. Pharm, Bull., 32, 7, 1307(2009).

Oral administration of synthetic retinoid Am80 (Tamibarotene) decreases brain beta-amyloid peptides in APP23 mice.

https://www.ncbi.nlm.nih.gov/pubmed/19571405

  1. Silverberg, G. D., et al.: Brain Res., 1317, 286(2010).

Amyloid and Tau accumulate in the brains of aged hydrocephalic rats https://www.ncbi.nlm.nih.gov/pubmed/20045398

  1. Silverberg, G. D., et al.: J. Neuropathol. Exp. Neurol., 69, 1, 98(2010).

Amyloid deposition and influx transporter expression at the blood-brain barrier increase in normal aging.

https://www.ncbi.nlm.nih.gov/pubmed/20010299

  1. Hashimoto, M., et al,: Acta Neuropathol., 119, 5, 543(2010).

Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Aβ42 and Alzheimer’s disease neuropathology https://www.ncbi.nlm.nih.gov/pubmed/20198479

  1. Liu, W., et al.: Neurol. Res., 34, 1, 3(2012).

Isoflurane-induced spatial memory impairment by a mechanism independent of amyloid-beta levels and tau protein phosphorylation changes in aged rats https://www.ncbi.nlm.nih.gov/pubmed/22196855

  1. Kawahara, K., et al.: Neuroscience, 207, 243(2012).

Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice https://www.ncbi.nlm.nih.gov/pubmed/22342341

  1. Chiu, C., et al.: Fluids Barriers CNS, 9, 1, 3(2012).

Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

 https://www.ncbi.nlm.nih.gov/pubmed/22269091

  1. Liu, H., et al.: Neurobiol. Aging, 33, 4, 826, e31(2012)

Regulation of β-amyloid level in the brain of rats with cerebrovascular hypoperfusion. https://www.ncbi.nlm.nih.gov/pubmed/21813211

  1. Keilani, S., et al.: J. Neurosci., 32, 15, 5223(2012).

Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide.

https://www.ncbi.nlm.nih.gov/pubmed/22496568

  1. Beyer, A. S., et al.: Neurobiol. Aging, 33, 4, 732(2012).

Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-β precursor protein

 https://www.ncbi.nlm.nih.gov/pubmed/20674096

  1. Ehrlich, D., et al.: Neuroscience, 205, 154(2012).

 Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. https://www.ncbi.nlm.nih.gov/pubmed/22244974

  1. Arnal, N., et al.: Int. J. Alzheimers Dis., 645379(2013).

Effects of Copper and/or Cholesterol Overload on Mitochondrial Function in a Rat Model of Incipient Neurodegeneration.

https://www.ncbi.nlm.nih.gov/pubmed/24363953

  1. Ehrlich, D., et al.: Platelets, 24, 1, 26(2013).

Effects of oxidative stress on amyloid precursor protein processing in rat and human platelets https://www.ncbi.nlm.nih.gov/pubmed/22385218

  1. Ai, J., et al.: J. Neurosci., 33, 9, 3989(2013).

MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats.

 https://www.ncbi.nlm.nih.gov/pubmed/23447608

  1. Hilpert, H., et al.: J. Med. Chem., 56, 10, 3980(2013).

β-Secretase (BACE1) inhibitors with high in vivo efficacy suitable for clinical evaluation in Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/23590342

  1. Shahani, N., et al,: J. Biol. Chem., 289, 9, 5799(2014).

Rheb GTPase regulates β-secretase levels and amyloid β generation. https://www.ncbi.nlm.nih.gov/pubmed/24368770

  1. Church, R. M., et al,: Behav. Neurosci., 128, 4, 523(2014).

Amyloid-beta accumulation, neurogenesis, behavior, and the age of rats. https://www.ncbi.nlm.nih.gov/pubmed/24841744

  1. Kawahara, K., et al.: J. Alzheimers Dis. 42, 2, 587(2014).

Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/24916544

  1. Collins-Praino, L. E., et al.: Acta Neuropathol. Commun., 2, 83(2014).

Soluble amyloid beta levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque severity

 https://www.ncbi.nlm.nih.gov/pubmed/25129614

  1. Zhang, X., et al.: Proc. Natl. Acad. Sci. USA, 112, 31, 9734(2015).

Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of Alzheimer’s disease

https://www.ncbi.nlm.nih.gov/pubmed/26199414

  1. Urich, E., et al.: Sci. Rep., 5, 14104(2015).

Cargo Delivery into the Brain by in vivo identified Transport Peptides. https://www.ncbi.nlm.nih.gov/pubmed/26411801

  1. Natunen, T., et al.: Neurobiol. Dis., 85, 187(2016).

Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models https://www.ncbi.nlm.nih.gov/pubmed/26563932

  1. Kurkinen, K. M. et al.: J. Cell Sci., 129, 11, 2224(2016).

SEPT8 modulates β-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1

https://www.ncbi.nlm.nih.gov/pubmed/27084579

  1. Chen, Y., et al.: Stroke, 48, 12, 3366(2017).

2-Cl-MGV-1 Ameliorates Apoptosis in the Thalamus and Hippocampus and Cognitive Deficits After Cortical Infarct in Rats.

https://www.ncbi.nlm.nih.gov/pubmed/29146879

  1. Ruderisch, N., et al.: EBioMedicine, 24, 76(2017).

Potent and Selective BACE-1 Peptide Inhibitors Lower Brain Aβ Levels Mediated by Brain Shuttle Transport

https://www.ncbi.nlm.nih.gov/pubmed/28923680

  1. Pera, M., et al.: EMBO J., 7 36, 22, 3356(2017).

 Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. https://www.ncbi.nlm.nih.gov/pubmed/29018038

  1. Nakamura, T., et al.: Ann. Clin. Transl. Neurol., 5,10, 1184(2018).

 Aging and APOE-e4 are determinative factors of plasma Ab42 levels https://www.ncbi.nlm.nih.gov/pubmed/30349853

  1. Kara, E., et al.: J. Biol. Chem., 293, 34, 13247(2018).

A flow cytometry–based in vitro assay reveals that formation of apolipoprotein E (ApoE)–amyloid beta complexes depends on ApoE isoform and cell type https://www.ncbi.nlm.nih.gov/pubmed/29950521

  1. Prasad, H., et al.: Proc. Natl. Acad. Sci. USA, 115, 28, E6640(2018).

Amyloid clearance defect in ApoE4 astrocytes is reversed by epigenetic correction of endosomal pH.

 https://www.ncbi.nlm.nih.gov/pubmed/29946028

  1. Ahlemeyer, B., et al.: J. Alzheimers Dis., 61, 4, 1425(2018).

Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. https://www.ncbi.nlm.nih.gov/pubmed/29376876

  1. Leskelä S., et al.: J. Alzheimers Dis., 62, 1, 269(2018).

Interrelationship between the Levels of C9orf72 and Amyloid-β Protein Precursor and Amyloid-β in Human Cells and Brain Samples.

https://www.ncbi.nlm.nih.gov/pubmed/29439323

  1. Kajiwara, Y., et al.: Acta Neuropathol. Commun., 6, 1, 144(2018). GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. https://www.ncbi.nlm.nih.gov/pubmed/30577786
  2. Sarajärvi, T., et al.: Neuropharmacology, 141, 76(2018).

Protein kinase C-activating isophthalate derivatives mitigate Alzheimer's disease-related cellular alterations

https://www.ncbi.nlm.nih.gov/pubmed/30138694

  1. György, B., et al.: Mol. Ther. Nucleic Acids, 11, 429(2018).

CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease.

https://www.ncbi.nlm.nih.gov/pubmed/29858078

  1. Kobayashi, Y., et al.: PLoS One. 13, 6, e0198493(2018).

Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer's disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet.

https://www.ncbi.nlm.nih.gov/pubmed/29856882

  1. Xu, J., et al.: J. Pineal. Res., e12584(2019).

 Melatonin Alleviates Cognition Impairment by Antagonizing Brain Insulin Resistance in Aged Rats Fed a High-Fat Diet.

 https://www.ncbi.nlm.nih.gov/pubmed/31050371

298-62401 Human β Amyloid(1-42) ELISA Kit Wako

  1. Serrano-Pozo A., et al.: Alzheimer Dis. Assoc. Disord., 3, 220(2010).

Effects of Simvastatin on Cholesterol Metabolism and Alzheimer Disease Biomarkers https://www.ncbi.nlm.nih.gov/pubmed/20473136

  1. Zhang, C., et al.: J. Alzheimers Dis., 22, 2, 683(2010).

Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. https://www.ncbi.nlm.nih.gov/pubmed/20847415

  1. Head, E., et al.: J. Alzheimers Dis., 23, 3, 399(2011).

 Plasma amyloid-β as a function of age, level of intellectual disability, and presence of dementia in Down syndrome.

https://www.ncbi.nlm.nih.gov/pubmed/21116050

  1. Youmans, K. L., et al.: J. Neurosci Methods, 196, 1, 51(2011).

Amyloid-β42 alters apolipoprotein E solubility in brains of mice with five familial AD mutations https://www.ncbi.nlm.nih.gov/pubmed/21219931

  1. Walls, K. C., et al.: J. Biol. Chem., 287, 36, 30317(2012).

Swedish Alzheimer Mutation Induces Mitochondrial Dysfunction Mediated by HSP60 Mislocalization of Amyloid Precursor Protein (APP) and Beta-Amyloid https://www.ncbi.nlm.nih.gov/pubmed/22753410

  1. Koppel, J., et al.: Mol. Med., 20, 29(2014).

CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau Processing in a Transgenic Mouse Model of Alzheimer’s Disease

https://www.ncbi.nlm.nih.gov/pubmed/24722782

  1. Waragai M., et al.: J. Alzheimers Dis., 41, 4, 1207(2014).

Utility of SPM8 plus DARTEL (VSRAD) combined with magnetic resonance spectroscopy as adjunct techniques for screening and predicting dementia due to Alzheimer's disease in clinical practice

https://www.ncbi.nlm.nih.gov/pubmed/24787913

  1. Stefanova, N. A., et al.: J. Alzheimers Dis., 38, 3, 681(2014).

Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. https://www.ncbi.nlm.nih.gov/pubmed/24047616

  1. Katsuda, T., et al.: Methods Mol. Biol., 1212, 171(2015).

Potential Application of Extracellular Vesicles of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Alzheimer’s Disease Therapeutics https://www.ncbi.nlm.nih.gov/pubmed/25085563

  1. Waragai, M., et al.: J. Alzheimers Dis., 60, 4, 1411(2017).

Decreased N-Acetyl Aspartate/Myo-Inositol Ratio in the Posterior Cingulate Cortex Shown by Magnetic Resonance Spectroscopy May Be One of the Risk Markers of Preclinical Alzheimer's Disease: A 7-Year Follow-Up Study.

 https://www.ncbi.nlm.nih.gov/pubmed/28968236

  1. Brubaker, W. D., et al.: Alzheimers Dement., 12, 1397(2017).

Peripheral complement interactions with amyloid β peptide: Erythrocyte clearance mechanisms https://www.ncbi.nlm.nih.gov/pubmed/28475854

  1. Benvegnù, S., et al.: Oncotarget., 8, 52, 89439(2017).

E3 ligase mahogunin (MGRN1) influences amyloid precursor protein maturation and secretion https://www.ncbi.nlm.nih.gov/pubmed/29163761

  1. Kanatsu, K., et al.: J. Neurochem., 147, 1, 110(2018).

Retrograde transport of γ-secretase from endosomes to the trans-Golgi network regulates Aβ42 production.

https://www.ncbi.nlm.nih.gov/pubmed/29851073

  1. Ohshima, Y., et al.: Heliyon, 4, 1, e00511(2018).

Mutations in the β-amyloid precursor protein in familial Alzheimer's disease increase Aβ oligomer production in cellular models

https://www.ncbi.nlm.nih.gov/pubmed/29560429

  1. Ohshima, Y., et al.: J. Toxicol. Sci., 43, 4, 257(2018).

Nicotine and methyl vinyl ketone, major components of cigarette smoke extracts, increase protective amyloid-β peptides in cells harboring amyloid-β precursor protein. https://www.ncbi.nlm.nih.gov/pubmed/29618714

  1. Crane, A., et al.: Alzheimers Dement., 2, 243(2018)

Peripheral complement interactions with amyloid β peptide in Alzheimer's disease: 2. Relationship to amyloid β immunotherapy.

https://www.ncbi.nlm.nih.gov/pubmed/28755839

  1. Kusakari, S., et al.: J. Neurochem., 144, 2, 218(2018).

Calmodulin-like skin protein protects against spatial learning impairment in a mouse model of Alzheimer disease.

https://www.ncbi.nlm.nih.gov/pubmed/29164613

  1. Robinson, A., et al.: J. Mol. Neurosci., 67, 4, 504(2019).

Combination of Insulin with a GLP1 Agonist Is Associated with Better Memory and Normal Expression of Insulin Receptor Pathway Genes in a Mouse Model of Alzheimer's Disease. https://www.ncbi.nlm.nih.gov/pubmed/30635783

  1. Neuner, S. M., et al.: Neuron, 101, 3, 399(2019).

Harnessing Genetic Complexity to Enhance Translatability of Alzheimer’s Disease Mouse Models: A Path toward Precision Medicine

https://www.ncbi.nlm.nih.gov/pubmed/30595332

296-64401 Human β Amyloid(1-42) ELISA Kit Wako, High Sensitive

  1. Ohta, K., et al.: Autophagy, 3, 345(2010).

Autophagy impairment stimulates PS1 expression and γ-secretase activity https://www.ncbi.nlm.nih.gov/pubmed/20168091

  1. Zhang, C., et al.: J. Alzheimers Dis., 22, 2, 683(2010).

 Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. https://www.ncbi.nlm.nih.gov/pubmed/20847415

  1. Richens, J. L., et al.: Int. J. Mol. Epidemiol. Genet., 5, 2, 53(2014).

Practical detection of a definitive biomarker panel for Alzheimer's disease; comparisons between matched plasma and cerebrospinal fluid https://www.ncbi.nlm.nih.gov/pubmed/24959311

  1. Xie, Z., et al.: Ann. Clin. Transl. Neurol., 1, 5, 319(2014). Preoperative cerebrospinal fluid β-Amyloid/Tau ratio and postoperative delirium. https://www.ncbi.nlm.nih.gov/pubmed/24860840
  2. Yokoyama, H., et al.: BMC Geriatr., 15, 60(2015).

The effect of cognitive-motor dual-task training on cognitive function and plasma amyloid β peptide 42/40 ratio in healthy elderly persons: a randomized controlled trial https://www.ncbi.nlm.nih.gov/pubmed/26018225

  1. Oka, S. et al.: Sci. Rep., 6, 37889(2016).

 Human mitochondrial transcriptional factor A breaks the mitochondria-mediated vicious cycle in Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/27897204

  1. Wan, W., et al.: Exp. Gerontol., 81, 92(2016).

EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse

https://www.ncbi.nlm.nih.gov/pubmed/27220811

  1. Tateno, A., et al.: Alzheimers Dement. (Amst)., 9, 51(2017).

 Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. https://www.ncbi.nlm.nih.gov/pubmed/28975146

  1. Kidana, K., et al.: EMBO Mol. Med., 10, 3, (2018).

Loss of kallikrein‐related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice

https://www.ncbi.nlm.nih.gov/pubmed/29311134

290-62601 Human/Rat β Amyloid(42)ELISA Kit Wako

  1. Shimmyo, Y., et al.: J. Neurosci. Res., 86, 2, 368(2008).

Multifunction of myricetin on Aβ: neuroprotection via a conformational change of Aβ and reduction of Aβ via the interference of secretases https://www.ncbi.nlm.nih.gov/pubmed/17722071 .

  1. Kawahara, K., et al.: Biol. Pharm. Bull., 32, 7, 1307(2009).

Oral administration of synthetic retinoid Am80 (Tamibarotene) decreases brain beta-amyloid peptides in APP23 mice.

https://www.ncbi.nlm.nih.gov/pubmed/19571405

  1. Zhang, C., et al.: J. Biol. Chem., 285, 37, 28472(2010).

Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

https://www.ncbi.nlm.nih.gov/pubmed/20622013

  1. Zhang, C., et al.: J. Alzheimers Dis., 22, 2, 683(2010).

Amyloid-β production via cleavage of amyloid-β protein precursor is modulated by cell density. https://www.ncbi.nlm.nih.gov/pubmed/20847415

  1. Sarajärvi, T., et al.: J. Cell Mol. Med., 16, 11, 2754(2012).

Bepridil decreases A β and calcium levels in the thalamus after middle cerebral artery occlusion in rats

https://www.ncbi.nlm.nih.gov/pubmed/22805236

  1. Kawahara, K., et al.: Neuroscience, 207, 243(2012).

 Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice https://www.ncbi.nlm.nih.gov/pubmed/22342341

  1. Beyer, A. S., et al.: Neurobiol. Aging, 33, 4, 732(2012).

Engulfment adapter PTB domain containing 1 interacts with and affects processing of the amyloid-β precursor protein

https://www.ncbi.nlm.nih.gov/pubmed/20674096

  1. Vepsäläinen, S., et al.: J. Nutr. Biochem., 24, 1, 360(2013).

 Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease

https://www.ncbi.nlm.nih.gov/pubmed/22995388

  1. Ramos-Rodriguez, J. J., et al.: PLoS One, 8, 11, e79947(2013).

Specific serotonergic denervation affects tau pathology and cognition without altering senile plaques deposition in APP/PS1 mice

 https://www.ncbi.nlm.nih.gov/pubmed/24278223

  1. Kitaoka, K., et al.: Neuropharmacology, 72, 58(2013).

 The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice https://www.ncbi.nlm.nih.gov/pubmed/23624141

  1. Wang, W., et al.: FASEB J., 28, 2, 849(2014).

Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2.

https://www.ncbi.nlm.nih.gov/pubmed/24249638

  1. Kawahara, K., et al.: J. Alzheimers Dis. 42, 2, 587(2014).

Cooperative therapeutic action of retinoic acid receptor and retinoid x receptor agonists in a mouse model of Alzheimer's disease.

 https://www.ncbi.nlm.nih.gov/pubmed/24916544

  1. Laiterä, T., et al.: PLoS One, 9, 4), e93717(2014).

Increased γ-secretase activity in idiopathic normal pressure hydrocephalus patients with β-amyloid pathology.

https://www.ncbi.nlm.nih.gov/pubmed/24699723

  1. Lipsanen, A., et al.: Neurosci. Lett., 580, 173(2014).

KB-R7943, an inhibitor of the reverse Na+/Ca2+ exchanger, does not modify secondary pathology in the thalamus following focal cerebral stroke in rats https://www.ncbi.nlm.nih.gov/pubmed/25123443

  1. Ramos-Rodriguez, J. J., et al.: Psychoneuroendocrinology, 48, 123(2014).

Prediabetes-induced vascular alterations exacerbate central pathology in APPswe/PS1dE9 mice. https://www.ncbi.nlm.nih.gov/pubmed/24998414

  1. Di, Loreto, S., et al.: Exp. Gerontol., 57, 57(2014).

 Regular and moderate exercise initiated in middle age prevents age-related amyloidogenesis and preserves synaptic and neuroprotective signaling in mouse brain cortex. https://www.ncbi.nlm.nih.gov/pubmed/24835196

  1. Stefanova, N. A., et al.: J. Alzheimers Dis., 38, 3, 681(2014).

 Alzheimer's disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. https://www.ncbi.nlm.nih.gov/pubmed/24047616

  1. Kim, Y. H., et al.: Nat. Protoc., 10, 7, 985(2015).

A 3D human neural cell culture system for modeling Alzheimer's disease. https://www.ncbi.nlm.nih.gov/pubmed/26068894

  1. Rudnitskaya, E. A., et al.: J. Alzheimers Dis., 47, 1, 103(2015)

Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer's disease

https://www.ncbi.nlm.nih.gov/pubmed/26402759

  1. Zhang, Y., et al.: Int. J. Radiat. Biol., 91, 1, 28(2015).

Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer's disease in rats.

https://www.ncbi.nlm.nih.gov/pubmed/25118893

  1. Leal, N. S., et al.: J. Cell Mol. Med., 20, 9, 1686(2016).

Mitofusin-2 knockdown increases ER–mitochondria contact and decreases amyloid β‐ peptide production

https://www.ncbi.nlm.nih.gov/pubmed/27203684

  1. Yamaguchi, T., et al.: Sci. Rep., 6, 34505(2016).

 Expression of B4GALNT1, an essential glycosyltransferase for the synthesis of complex gangliosides, suppresses BACE1 degradation and modulates APP processing https://www.ncbi.nlm.nih.gov/pubmed/27687691

  1. Ramos-Rodriguez, J. J., et al.: Mol. Neurobiol., 53, 4, 2685(2016).

Increased Spontaneous Central Bleeding and Cognition Impairment in APP/PS1 Mice with Poorly Controlled Diabetes Mellitus.

https://www.ncbi.nlm.nih.gov/pubmed/26156287 .

  1. Stefanova, N. A., et al.: Aging (Albany NY), 8, 11, 2713(2016).

An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology.

 https://www.ncbi.nlm.nih.gov/pubmed/27750209

  1. Chen, W. T., et al.: PLoS One, 7, 4, e35807(2017).

Amyloid-beta (Aβ) D7H mutation increases oligomeric Aβ42 and alters properties of Aβ-zinc/copper assemblies

https://www.ncbi.nlm.nih.gov/pubmed/22558227

  1. Tateno, A., et al.: Alzheimers Dement. (Amst)., 9, 51(2017).

Effect of apolipoprotein E phenotype on the association of plasma amyloid β and amyloid positron emission tomography imaging in Japan. https://www.ncbi.nlm.nih.gov/pubmed/28975146

  1. Infante-Garcia C., et al.: Mol. Neurobiol., 54, 6, 4696(2017).

Long-Term Mangiferin Extract Treatment Improves Central Pathology and Cognitive Deficits in APP/PS1 Mice.

https://www.ncbi.nlm.nih.gov/pubmed/27443159

  1. Ramos-Rodriguez, J. J., et al.: Mol. Neurobiol., 54, 5, 3428(2017).

Progressive Neuronal Pathology and Synaptic Loss Induced by Prediabetes and Type 2 Diabetes in a Mouse Model of Alzheimer's Disease.

https://www.ncbi.nlm.nih.gov/pubmed/27177549

  1. Chen, Y., et al.: Stroke, 48, 12, 3366(2017).

2-Cl-MGV-1 Ameliorates Apoptosis in the Thalamus and Hippocampus and Cognitive Deficits After Cortical Infarct in Rats.

https://www.ncbi.nlm.nih.gov/pubmed/29146879

  1. Illouz, T., et al.: J. Neurosci. Methods, 291, 28(2017).

A protocol for quantitative analysis of murine and human amyloid-β1-40 and 1-42. https://www.ncbi.nlm.nih.gov/pubmed/28768163

  1. Yu, M., et al.: J. Ethnopharmacol., 198, 167(2017).

Dehydropachymic acid decreases bafilomycin A1 induced β-Amyloid accumulation in PC12 cells https://www.ncbi.nlm.nih.gov/pubmed/28077330

  1. Tomita, T., Methods Enzymol., 584, 185(2017).

 Probing the Structure and Function Relationships of Presenilin by Substituted-Cysteine Accessibility Method.

https://www.ncbi.nlm.nih.gov/pubmed/28065263

  1. Kolosova, N. G., et al.: Curr. Alzheimer Res., 14, 12, 1283(2017).

Antioxidant SkQ1 Alleviates Signs of Alzheimer's Disease-like Pathology in Old OXYS Rats by Reversing Mitochondrial Deterioration

https://www.ncbi.nlm.nih.gov/pubmed/28637402

  1. Benvegnù, S., et al.: Oncotarget., 8, 52, 89439(2017).

E3 ligase mahogunin (MGRN1) influences amyloid precursor protein maturation and secretion https://www.ncbi.nlm.nih.gov/pubmed/29163761

  1. Ramos-Rodriguez, J. J., et al.: Mol. Neurobiol., 54, 5, 3428(2017).

Progressive Neuronal Pathology and Synaptic Loss Induced by Prediabetes and Type 2 Diabetes in a Mouse Model of Alzheimer's Disease.

 https://www.ncbi.nlm.nih.gov/pubmed/27177549

  1. Kara, E., et al.: J. Biol. Chem., 293, 34, 13247(2018).

 A flow cytometry–based in vitro assay reveals that formation of apolipoprotein E (ApoE)–amyloid beta complexes depends on ApoE isoform and cell type https://www.ncbi.nlm.nih.gov/pubmed/29950521

  1. Tyler, C. R., et al.: Toxicol. Sci., 163, 1, 123(2018).

 Aging Exacerbates Neuroinflammatory Outcomes Induced by Acute Ozone Exposure. https://www.ncbi.nlm.nih.gov/pubmed/29385576

  1. Lim, P. H., et al.: Behav. Brain Res., 353, 242(2018).

Premature hippocampus-dependent memory decline in middle-aged females of a genetic rat model of depression

https://www.ncbi.nlm.nih.gov/pubmed/29490235

292-64501 Human/Rat β Amyloid(42) ELISA Kit Wako, High Sensitive

  1. Kawahara, K., et al.: Biol. Pharm, Bull., 32, 7, 1307(2009).

Oral administration of synthetic retinoid Am80 (Tamibarotene) decreases brain beta-amyloid peptides in APP23 mice.

 https://www.ncbi.nlm.nih.gov/pubmed/19571405

  1. Silverberg, G. D., et al.: Brain Res., 1317, 286(2010).

Amyloid and Tau accumulate in the brains of aged hydrocephalic rats https://www.ncbi.nlm.nih.gov/pubmed/20045398

  1. Silverberg, G. D., et al.: J. Neuropathol. Exp. Neurol., 69, 1, 98(2010).

Amyloid deposition and influx transporter expression at the blood-brain barrier increase in normal aging.

https://www.ncbi.nlm.nih.gov/pubmed/20010299

  1. Hashimoto, M., et al,: Acta Neuropathol., 119, 5, 543(2010).

Analysis of microdissected human neurons by a sensitive ELISA reveals a correlation between elevated intracellular concentrations of Aβ42 and Alzheimer’s disease neuropathology https://www.ncbi.nlm.nih.gov/pubmed/20198479

  1. Liu, W., et al.: Neurol. Res., 34, 1, 3(2012).

Isoflurane-induced spatial memory impairment by a mechanism independent of amyloid-beta levels and tau protein phosphorylation changes in aged rats https://www.ncbi.nlm.nih.gov/pubmed/22196855

  1. Bryson, J. B., et al.: Hum. Mol. Genet., 21, 17, 3871(2012).

Amyloid precursor protein (APP) contributes to pathology in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

 https://www.ncbi.nlm.nih.gov/pubmed/22678056

  1. Chiu, C., et al.: Fluids Barriers CNS, 9, 1, 3(2012).

Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months

https://www.ncbi.nlm.nih.gov/pubmed/22269091

  1. Liu, H., et al.: Neurobiol. Aging, 33, 4, 826, e31(2012)

Regulation of β-amyloid level in the brain of rats with cerebrovascular hypoperfusion. https://www.ncbi.nlm.nih.gov/pubmed/21813211

  1. Keilani, S., et al.: J. Neurosci., 32, 15, 5223(2012).

Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide.

https://www.ncbi.nlm.nih.gov/pubmed/22496568

  1. Ehrlich, D., et al.: Neuroscience, 205, 154(2012).

Effects of long-term moderate ethanol and cholesterol on cognition, cholinergic neurons, inflammation, and vascular impairment in rats. https://www.ncbi.nlm.nih.gov/pubmed/22244974

  1. Kawahara, K., et al.: Neuroscience, 207, 243(2012).

 Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice https://www.ncbi.nlm.nih.gov/pubmed/22342341

  1. Ito, Y., et al.: Mol. Vis., 18, 2647(2018).

 Induction of amyloid-β(1-42) in the retina and optic nerve head of chronic ocular hypertensive monkeys.

 https://www.ncbi.nlm.nih.gov/pubmed/23170058

  1. Ehrlich, D., et al.: Platelets, 24, 1, 26(2013).

Effects of oxidative stress on amyloid precursor protein processing in rat and human platelets https://www.ncbi.nlm.nih.gov/pubmed/22385218

  1. Ai, J., et al.: J. Neurosci., 33, 9, 3989(2013).

MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats.

 https://www.ncbi.nlm.nih.gov/pubmed/23447608

  1. Teich, A. F., et al.: PLoS One., 8, 2, e55647(2013).

A Reliable Way to Detect Endogenous Murine β-Amyloid https://www.ncbi.nlm.nih.gov/pubmed/23383341 .

  1. Dolev, I., et al.: Nat. Neurosci., 16, 5, 587(2013).

Spike bursts increase amyloid-β 40/42 ratio by inducing a presenilin-1 conformational change. https://www.ncbi.nlm.nih.gov/pubmed/23563578

  1. Natunen, T., et al.: PLoS One, 8, 11, e80700(2013).

 Effects of NR1H3 genetic variation on the expression of liver X receptor α and the progression of Alzheimer's disease.

https://www.ncbi.nlm.nih.gov/pubmed/24278306

  1. Natunen, T., et al.: J. Alzheimers Dis., 37, 1, 217(2013).

 Elucidation of the BACE1 regulating factor GGA3 in Alzheimer's disease https://www.ncbi.nlm.nih.gov/pubmed/23970038

  1. Kanatsu, K., et al.: Nat. Commun., 5, 3386(2014).

Decreased CALM expression reduces Aβ42 to total Aβ ratio through clathrin-mediated endocytosis of γ-secretase

https://www.ncbi.nlm.nih.gov/pubmed/24577224

 20.. Shahani, N., et al,: J. Biol. Chem., 289, 9, 5799(2014).

 Rheb GTPase regulates β-secretase levels and amyloid β generation. https://www.ncbi.nlm.nih.gov/pubmed/24368770

  1. Church, R. M., et al,: Behav. Neurosci., 128, 4, 523(2014).

Amyloid-beta accumulation, neurogenesis, behavior, and the age of rats. https://www.ncbi.nlm.nih.gov/pubmed/24841744

  1. Collins-Praino, L. E., et al.: Acta Neuropathol. Commun., 2, 83(2014).

Soluble amyloid beta levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque severity

https://www.ncbi.nlm.nih.gov/pubmed/25129614

  1. Schütt, T., et al.: J. Vet. Intern. Med., 29, 6, 1569(2015).

Cognitive function, progression of age‐related behavioral changes, biomarkers, and survival in dogs more than 8 years old

https://www.ncbi.nlm.nih.gov/pubmed/26463980

  1. Schütt, T., et al.: J. Alzheimers Dis., 52, 2, 433(2016).

Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer's Disease: A Translational Study of Neuropathological and Inflammatory Markers. https://www.ncbi.nlm.nih.gov/pubmed/27003213

  1. Kanatsu, K., et al.: Hum. Mol. Genet., 25, 18, 3988(2016).

Partial loss of CALM function reduces Aβ42 production and amyloid deposition in vivo https://www.ncbi.nlm.nih.gov/pubmed/27466196

  1. Natunen, T., et al.: Neurobiol. Dis., 85, 187(2016).

Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models https://www.ncbi.nlm.nih.gov/pubmed/26563932

  1. Kurkinen, K. M. et al.: J. Cell Sci., 129, 11, 2224(2016).

SEPT8 modulates β-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1

https://www.ncbi.nlm.nih.gov/pubmed/27084579

  1. Pera, M., et al.: EMBO J., 7 36, 22, 3356(2017).

Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. https://www.ncbi.nlm.nih.gov/pubmed/29018038

  1. Gowrishankar, S., et al.: J. Cell Biol., 216, 10, 3291(2017).

Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology. https://www.ncbi.nlm.nih.gov/pubmed/28784610

  1. Cai, T., et al.: J. Neurosci., 37, 50, 12272(2017).

Activation of γ-Secretase Trimming Activity by Topological Changes of Transmembrane Domain 1 of Presenilin 1.

https://www.ncbi.nlm.nih.gov/pubmed/29118109

  1. Kolisnyk, B., et al.: Cereb. Cortex., 27, 7,3553(2017).

Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer's-like pathology https://www.ncbi.nlm.nih.gov/pubmed/27312991

  1. Ahlemeyer, B., et al.: J. Alzheimers Dis., 61, 4, 1425(2018).

Endogenous Murine Amyloid-β Peptide Assembles into Aggregates in the Aged C57BL/6J Mouse Suggesting These Animals as a Model to Study Pathogenesis of Amyloid-β Plaque Formation. https://www.ncbi.nlm.nih.gov/pubmed/29376876 .

  1. Leskelä S., et al.: J. Alzheimers Dis., 62, 1, 269(2018).

Interrelationship between the Levels of C9orf72 and Amyloid-β Protein Precursor and Amyloid-β in Human Cells and Brain Samples.

 https://www.ncbi.nlm.nih.gov/pubmed/29439323

  1. Kajiwara, Y., et al.: Acta Neuropathol. Commun., 6, 1, 144(2018).

GJA1 (connexin43) is a key regulator of Alzheimer's disease pathogenesis. https://www.ncbi.nlm.nih.gov/pubmed/30577786 .

  1. György, B., et al.: Mol. Ther. Nucleic Acids, 11, 429(2018).

CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease.

https://www.ncbi.nlm.nih.gov/pubmed/29858078

  1. Kobayashi, Y., et al.: PLoS One. 13, 6, e0198493(2018).

Oral administration of Pantoea agglomerans-derived lipopolysaccharide prevents metabolic dysfunction and Alzheimer's disease-related memory loss in senescence-accelerated prone 8 (SAMP8) mice fed a high-fat diet.

 https://www.ncbi.nlm.nih.gov/pubmed/29856882

  1. Kidana, K., et al.: EMBO Mol. Med., 10, 3, (2018).

 Loss of kallikrein‐related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice

https://www.ncbi.nlm.nih.gov/pubmed/29311134

  1. Shin, J. W., et al.: Am. J. Chin. Med., 46, 6, 1203(2018).

 Scutellarin Ameliorates Learning and Memory Deficit via Suppressing -Amyloid Formation and Microglial Activation in Rats with Chronic Cerebral Hypoperfusion https://www.ncbi.nlm.nih.gov/pubmed/30149759

  1. Sarajärvi, T., et al.: Neuropharmacology, 141, 76(2018).

 Protein kinase C-activating isophthalate derivatives mitigate Alzheimer's disease-related cellular alterations

https://www.ncbi.nlm.nih.gov/pubmed/30138694

  1. 41. Moser, V. A. et al.: J. Neuroinflammation, 15, 1, 306(2018). TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. https://www.ncbi.nlm.nih.gov/pubmed/30396359
  2. Xu, J., et al.: J. Pineal. Res., e12584(2019).

Melatonin Alleviates Cognition Impairment by Antagonizing Brain Insulin Resistance in Aged Rats Fed a High-Fat Diet.

https://www.ncbi.nlm.nih.gov/pubmed/31050371

  1. Hascup, E. R., et al.: J. Neurochem., 148, 2, 219(2019).

Diet-induced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AβPP/PS1 mice.

https://www.ncbi.nlm.nih.gov/pubmed/30472734

Articles that you may also interested in

Search Articles

Latest Articles

  • NS基础培养基是一款适合用于神经细胞培养的基础培养基。NS Supplement是用于神经细胞培养的无血清Supplement(含有维生素A乙酸酯Retinyl...

  • M30 Apoptosense® ELISA是VLVbio的畅销产品。可用于定量检测表达角蛋白18(K18)细胞(人)的凋亡情况。检测结果可信度高,检测结果重复性好。特异性检测可信度高是因为M30 Apoptosense® ELISA只单独检测可溶性caspase-cleaved角蛋白18(细胞凋亡产物)。该产品广泛运用于肝脏疾病,肿瘤,毒理学等研究领域。M30 Apoptosense® ELISA可用于检测人血清,获CE认证,所有试剂即开即用。

  • BalanCD CHO Feed 4是一种营养丰富的补料培养基,旨在保证蛋白质质量和功能的同时解锁高性能CHO细胞系的可能性。作为可放大的BalanCD CHO培养基的一部分,建议与BalanCD CHO Growth A配合使用,以提高高质量重组蛋白的产量。